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Abstract—This paper presents a general discussion of the lateral buckling of uniform and doubly
symmetric / beams with web stiffeners and batten plates. In order to express generally the lateral
buckling strength of the 7 beam. whether with or without the web stiffeners and, or batten plates, a
function extending the Dirac function is used. The critical moments derived from the energy method
take the same equations as ones for the original / beam when the torsional constant and the moment
of inertia about the weak axis of the 7 beam with the web stuitfencrs and or batten plates are
exchanged for those of the original / beam. The numenical results show that. in practice, the effects
due to the web stiffeners and batten plates on the moment of inertia about the weak axis can be
neglected, but the effects due to those on the torsional constant cannot be neglected. This paper
demonstrates mathematically the phenomenen that the web stiffeners and batten plates increase the
critical moment of beams.

I. INTRODUCTION

Lateral buckling of uniform beams without web stiffeners and batten plates has been studied
by, for cxample, Viasov (1936). Timoshenko and Gere (1961), Galambos (1936), Salvadori
(1956) and Blcich (1952). However, in practice, beams are accompanicd by web stiffencrs
and/or batten plates, and it is generally known that web stiffeners and batten plates increase
the lateral buckling strength of beams. This increase is considered to be duce to the local
increment of both the torsional stiffness and the bending stiffness resulting from the use of
web stiffeners and;or batten plates. Nevertheless, the present trends in structural design
systems neglect the effects due to web stitfeners and batten plates on lateral buckling. Also,
the relationship between beams with and without web stiffeners and/or batten plates in
terms of lateral buckling is not clear.

Although Vlasov (1936) discusses a design method for beams with web stiffencers and/or
batten plates, there is no mention of lateral buckling, and the design method is not practical
because of the complicated equations. Thus, although there are a lot of papers dealing with
the fateral buckling of uniform [ beams, there are few studies dealing with the lateral
buckling of the / beams with web stiffeners and/or batten plates.

The purposc of this paper is to give a general view of the lateral buckling of a uniform
and symmetric [ beam with web stiffeners and/or batten plates. In order to obtain a general
description of the lateral buckling of a beam, whether with or without the web stiffeners and
the batten plates, the local effects due to web stiffeners and batten plates are expressed by
using a function extending the Dirac function. The lateral buckling of [ beams with web
stiffeners and batten plates is presented by using the energy mcthod; and the obtained
equation will be similar to the well-known equation of 7 beams without web stiffeners and
batten plates when the torsional constant and the moment of inertia about the weak axis
of the beam are exchanged for those of the original 7 beam. Next, the expressions presented
for the lateral buckling are verified by numerical calculations.

2. BASIC ASSUMPTIONS
In analyses the following assumptions are used.

(1) The beam is a doubly symmetric and uniform / beam.

(2) The in-planc distortion of the transverse cross section, the initial imperfection, and
the residual stresscs are neglected.

(3) The lateral buckling is in an elastic region.
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Fig. 1. Coordinates of a beam with web stitfeners and batten plates.

3. TORSIONAL CONSTANT AND MOMENT OF INERTIA OF A BEAM

Consider a doubly symmetric and uniform / beam with web stiffeners and batten plates
as shown in Fig.l. in which the members and location of the web stiffeners and batten
plates can be taken arbitrarily. The Cartesian coordinate system is employed. in which the
axes v and y are the principal axes of the beam, and the axis = passes through the centroidal
axis of the beam.

The torsional constant, J, and moment of inertia about its weak axis. {,, at each point
where the web stiffener or batten plate is located increase locally due to the web stiffener
or batten plate. The moment of inertia about its weak axis, /.. and the torsional constant,
J. of the beam tn which a web stiffener s located at - = -, and a batten platc at - =

Spis
mity be expressed generally as
[ -!‘¢)+ZI|(D(-‘_~\I)+Z[;['D(-"'-pr (l)
- =1
J=Jy+ Z JoD(z=z2)+ Z Dz -2, (2)

[

in which 7, is the moment of inertia about the weak axis of the / beam without the web
stiffeners and batten plates, /,, the moment of inertiz about the weak axis due to a web

stiffener located at = = z,;; 1, the moment of inertia about the weak axis due to a batten
plate located at = = =, 5 J, the torsional constant of the / beam without web stiffeners and
batten plates; J, the torsional constant due to a web stiffener located at - = z,;; J, the

torsional constant duce to a batten plate located at = = z,;; z,; the distance of the middle
point of thickness of thc ith web stiffener; z,, the distance of the middle pomt of width

of the ith batten plate; Z the sum for the total number, s, of web stiffencers ; and Z the sum

for the total number, p, of batten plates. Also, D(z -z} is defined as a function in which
the Dirac function o(z — z,,) exists continuously in lhc rc&,ion of thickness, 1, of the ith web
stitfener, namely, the region from z,—¢/2 to z,,+¢,2. Similarly, D(z—z,) is defined as a
function in which the Dirac function §(z —z,) exists continuously in the region of width,
b,, of the ith batten plate, namely, the region from =, —5,/2 to 2, +b,/2. Bricfly, function
D is considered to be the sum of the Dirac function d distributing continuously in the given
region. The detail and employment of the Dirac function are given in Mikusinski and
Sikorski (1957) and Fryba (1972), respectively.

In order to state bricfly the subsequent development, it is assumed that cach shape of
the web stiffeners and batten plates ul an arbitrary point of the / beam is symmetric with
respect to the y-axis, as shown in Fig. 2. Henee, cach web stiffener and cach batten plate

make a pair at points where they are Iothd. The transverse cross section of the 7 beam at
the point where a pair of web stiffeners (s located is translated from the / section to the
solid section due to the existence of their web stiffeners. Hence, the torsional constant. J,,
duc to their web stiffeners can be obtained by subtracting the torsional constant of the
original / beam from the torsional constant of the solid scction. On the other hand. the
transverse cross section of the 7 beam at the point where a pair of batten plates is located
forms the closed cross section by the 7 beam and their batten plates. Hence. the torsional
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Fig. 2. Web stiffeners and batten plates.

constant, J,, due to their batten plates. is obtained by subtracting the torsional constant of
the original [ beam from the torsional constant of the closed cross section. Meanwhile, the
increments of the moments of inertia due to a pair of web stiffeners and a pair of batten
plates are casily obtained from a consideration of the increments duc to their web stiffeners
and batten plates, respectively. Hence, the torsional constants, J, and J,. and the moments
of inertin. /., and [, arc given us

4

J =a‘kf'~—~
5 ~ 71 ‘

4
() =" ! 3)

j_x(ﬁlz‘f zi‘ 4
P g R TR )
+

6, 1

P

2620yt 2hi)
Rt ®)

e} s
I, = wl’-iﬁ +20, hB? (6)

in which the constant f) tukes the following value from Utoguch (1968):

16 192 & | nrh
= 1 T Y 3 tanh i (n=135...,%) (N

in which constants a, b, 1,, 1,. h, fi. b are indicated in Fig. 2. Here, eyns (3) and (4) are
casily obtained from Gjelsvik (19581).

Since the web stiffeners and batten plates are located discontinuously in the beam, they
do not have enough stiffness in the axial direction. Thercfore, the web stiffeners and the
batten plates may be assumed to have no effect on warping in practice. and the warping
constant, [, can be taken as the value of the original 7 beam, namely

[2
r= _‘33 t. ®)
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Fig. 3. Lateral buckling of / beam in pure bending.

4. BUCKLING OF SIMPLY SUPPORTED 7 BEAMS IN UNIFORM BENDING

Consider the lateral buckling of the 7 beam. subject to a uniform bending moment, M.
as shown in Fig. 3.

From eqn (5.87) of Chujes (1974), the total potential energy, [T, stored in the beam
during buckling is given as

L[ ) . .
n, = ’J ELWY+ETB) +GI (B =2Mu ] d: 9)

in which u is the displacement in the v direction, f# the angle of twist about the - axis, £
Young's modulus, G the shear modulus, and L the span length of the beam. Primes indicate
differentiation with respect to z. Substituting egns (1) and (2) into eqn (9) yields

| I8 ¥ r R
M, = ’ﬁ {I;'[I”,+ Z. L D(z=z2)+ Z. 1, 1)(:—:,,,)}(1/')~
> - r 3
+ET ()} +(1[J(, +Y S D=2+, 1)(:-:,,,)](/&')- —2Mu /f'} d=. (10)
- L [

The ends of the beam are assumed to be restrained against twisting and lateral trans-
lation, but free to warp and free to rotate about the principal axes. The analytical formula-
tion of these boundary conditions is

u =0

B =0

1

[

} at > =0 and L. (n

In order to present briefly the subsequent development, the buckling deformations v and 8
satisfying eygns (1 1) arc approximated as

w=,sin (12)
L

/i, sin ’; (13)

-

I

in common with Chajes (1974).
Substituting eqns (12) and (13) into eqn (10), the total cnergy. [1,. yields

I AN AP
Mg =4l I:E(L) (u.)'l,.|+Er<z> (/f|)'+G(ﬂ|)'./,—2x\[u|/ﬂ] (14)

in which /,, and J, are defined as
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22 [t e = 2”(‘ .,(rz:)
Iyl —I'FG+E,,Z;£ 1}',1 D(-—__“»)Sln (—Ij) d-+z Z 1;-;: D("“-—"pl)Sln _E d*

i= 140
(15)
28 [ k.~ RN e
Iy =Jo+ Z,; ) J, D(z—z,) cos* T d-+ Lzl , J, D(z—:,) cos’ [ d:.
(16)
Using the following formulas for the Dirac function J
, 0 fori<a<b
J -8 f(Dd==<f(&) fora<i<b an
0 fora<b<¢

the terms including function D in eqns (13) and (16) beecome

L = il i n-
j J, D{:««:,.)cos’( ) = J- [ f J.6(z = cos? ( :) d- | d?
0 L e 12 o L
- J "I cos? (n?) dz
102 L
J, L. (r\  (2r=,
= 5_ l_,[‘ + Tt[: SIm ( L ) COs ( 7 )] (lg)

In order to obtain the approximation of eqn (18), expinding sin (/L) in powcer serics,
eqn (18) can be rewritten as

LJTD(:—:“)COS’ (7{) b
J, N YA S TAY =,
*:"'{”[‘“3!('L)+5!<L)+”']“°”( L)} (%

Since this series converges very rapidly. the consideration of the first term of the series gives
an accuracy sulficient for all practical purposes. Henee, the approximation of egn (18) may

be written as
R ‘(’") =~ J (”) (20)
=z cos | cxJotecos |
e L1CO0s L q COS L
Similarly. one can obtain the following expression :

L . n:> . (ﬂ:‘)
L. Dlz~z)sint | -2 )dz~ F tsint |7 L
L o DA ) Sin (L sin*{ ©,

2h
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From egns (20) and (21). the function D has the following approximate relations with
the Dirac function d:

D(z—z,)~1.0(z—=z) (22
D(z—z,) = bh,0(z—z,). (23)

Using these relations. eqns (15) and (16) can be expressed as

2 7!-‘, n',,,
Ly=1l,+7 Z 1,8, sin’ Z I, b,sin’ i (24)

l-—l x-'l

2 nZy 2 2 L7z,
Ji=do+ ] Z.ltcos T +ZZJﬂb,,c05' - 25)

l==| i=1

in which the underlined terms indicate the effects due to the web stiffeners and batten plates.
It the web stiffeners and batten plates have the same shapes, the moments of inertia, /,, and
1.,. and the torsional constants, J, and J,. due to the web stiffeners and the batten plates,
respectively, become constants.

The critical moment, M, is reached when ncutral equilibrium is possible, and the
requirenient for neutral cquilibrium is that the derivatives of T1, with respect to w) and f3,
vanish

1l
g —0 (26)
Ju,y
clly

= (). 27
o, (27)

It the equilibrium is to correspond to a deformed configuration, the determinant of egns
(26) and (27) must vanish. Henee, the critical moment, M, may be obtained as

1/—"\/(1:‘1 [Fr("): GJ D 28
{ ‘_I‘ - rl - [‘ + I_ . (~)

Now, if" the effects due to the web stiffeners and the batten plates in both the moment of
inertia and torsional constant are neglected. the relations [, — 1, and J, — J, are eflected

and eqn (28) yiclds
n ﬂ

and the result agrees with eqn (5.96) of Chajes (1974).

5. BUCKLING OF BOTH ENDS FIXED 7 BEAMS IN UNIFORM BENDING
A member is now considered, the ends of which are tfree to rotate about the horizontal

axis, but fully restrained against all other displacements. Hence

u=1u =10

p=p = O} at z=0and L. (30)
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In common with Chajes (1974). u and § satisfying eqns (30) are approximated by

u=u (l-cos g%;) 3h

p=48 (l—cos ggi)

Substituting eqns (31) and (32) into egn (10). the total potential energy. ;. stored in the
beam during buckling may be written as

L{2nY Y
ns*“:{("’[)[ ( )(u,) 1‘|+Er< )(B) +G(ﬁx) Ji— ”“lﬁl] (33)

in which the cross sectional constants, 7, and J,. may be expressed as

(32)

2 2nz, _n_,,,
[sl "‘[)0+ Z [“I LOS ‘Z;‘ Lzl‘[’h CO\ L (34)

:«I i=}

l~l

2 ”rr_ 2nz,,
Ji=Jot Z J, ¢ sin’ J,, h,, sin® i (35)
‘x—-l

by using eqns (22) and (23} as approximate expressions for function B, The underlined
terms in egns (34) and (35} indicate the cifects due to the web sttfeners and the batten
plates.

The critical moment, M, is determined from the requirement for neutral equilibrium
that the derivatives of T, with respect to o, and ff,. respectively, must vanish, Hence

= oo () e ])

Now, if the effects due to the web stiffeners and batten plates in the moments of inertia
and torstonal constant are neglected, relations 1, — 1, and J, — J, are valid. and the result
agrees with egn {5.103) of Chajes (1974).

6. BUCKLING OF SIMPLY SUPPORTED { BEAMS IN CONCENTRATED LOAD

Consider the lateral buckling of the simply supported 7 beam with the web stiffeners
and batten plates subjected to a concentrated load, P, at the midspan, as shown in Fig. 4.
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Fig. 4. Lateral buckling of 7 beam with concentrated load.
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It is assumed that the concentrated load. P, is applied at the centroid of the cross section
and that the load rematins vertical as the beam buckles. The employment of this assumption
simplifies the expression of the potential energy done by the external load. P. Fukumoto
(1982) does not take this assumption into consideration when he discusses the lateral
buckling of 7 beams without web stiffeners and batten plates.

The current total potential energy. Iy stored in the member during buckling is
obtained as

vy 4 N

- 5 . Lrpr-2p:
[ =5 [EL.(M")-+Er(ﬂ”)-+GJ([3’)-} d:~f

LA A 37
\ , gl ¢ (A7)

from eqn (5.108) of Chajes (1974). It is desirable to express u in terms of f# and thus reduce
the number of variables in the problem. Now, it the current flexural and torsional boundary
conditions of the beam are assumed to be eqns (11), then the relation

., Pzp
“Eapr (38)

can be applied from eqn (5.109) of Chajes (1974). Substituting cqns (1), (2) and (38) into
eqn (37). the total potential energy, T1,. yiclds

I I . \ P - .
M, = ,J {1;r(/:")- +(;[J‘,+ VI D=2 )+ Y I, D=2, I(/i')-}d:
( - - -

e~ 1

AN [)1:2 ):.‘
/ ~dz. (39)

Ju s P 4
4E|:I.‘,+ Z 1.D(z—-z,)+ Z l,D(z—z,
-l

=1
In the above equation function D appears in the denominator. This may be written as

l

y I 7
I;'(I+ZI|‘\ D(:—:\l)+z IrpD(:_':/u)
[ N

I [ 1
RN T A /‘_(,J”‘-‘“-‘"
s [
+§_:*I' s — I)“:]I)(:—:,,,)
O I l
+S’I' foil+1, /‘.(,]D(:"—"”) (40)

from the definition of the Dirac function, in which z,, indicates the coordinate value of =

s

at the point where the web stitfener and the batten plate are located at the same point. Y *

r
is the sum of web stiffeners at a different location from the batten plates; Y * the sum of
-

batten plates at a different location from the web stiffeners ; and Z* the sum of both web
stiffencrs and batten plates. when they are located at the same point (i.e. 2, = =,).

Equation (13) is used for the approximate function of f# satisfying the current boundary
conditions. Substituting eqn (13) into cqn (39) and using ¢gn (40). the total potential
energy, [g. may be written as
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. 2 6 PZLZ 2
nazé[gr( )(ﬁ} v, (5 2 6-C +4s)x:sz.fﬁd] 0

in which 7, and J, become

L=+ 42)

(43)

by using the approximate relations. namely, eqns (22) and (23). Here, notation & is defined
as

., m")‘
“*Z A.,(t+z)(”““" L

| %, h, o, Y
» . in L om
_-?“ U('+1’,) (-—p,\]n [‘>

1wt +x2,b, .n:r,,:
- Z‘ -(:‘,,,sm ')

2 (,(l+1 +a,,) L
_ RS (44)
in which notations k. 2,, and x, are defined us
L’(n +6)
= 4
ko T 48n? (5)
L
R
1,
= 4
al’ [v() ( 6)

The underlined terms in eqn (44) indicate the effects due to the web stiffeners and batten
plates. The coeflicient 172 in these terms appears due to change in the integral region from
the half span of the beam to the total span, such that cach Z* indicates the sum for the
total span.

The condition that at the critical load the first variation of I, must vanish gives the
following critical load, P:

r= 4( )JC%Q[”( ):““ D 47

Now, if the effects due to the web stiffeners and batten plates are neglected., the relations
I,y = I,and J, — J, are valid, and the result agrees with eqn (5.115) of Chajes (1974). The
critical moment for the critical load yields
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PL | Y
M=-7=1 36 iy (Elr. [EF(Z> +GJ,]>- (48)

7. BUCKLING OF BOTH ENDS FIXED 7 BEAMS IN CONCENTRATED LOAD

Consider the lateral buckling of both ends fixed [ beams with web stiffeners and, or
batten plates, subjected to a concentrated load at the midspan. The current flexural and
torsional boundary conditions are given by eqn (30).

Using the above-mentioned assumption for the concentrated load. P, the total potential
energy, [1;. stored in the member during buckling is given by

E{t " s PO R SY X FERF AV
HB—ZJ; [ELW)' +ET(B)+GI(B) ]d-—J; 63EL dz.  (49)

In order to express u by . employing the following relation in eqn (49)

M. P@:-L)p

W= T Bl T T8EL (50)
the total potential energy may be rewritten as
| I3 . . I,Z])Z/{I(I():Z_LZ)
[, = ANIEN )] d= — - ds.
" 2L [EC () +GI()] ¢ _[) 631, ¢ (51

Now, as for the approximated function for 8 satisfying the boundary equations given
in egqn (30). the function given in eqn (32) 1s adapted. Substituting eqns (1), (2), and (32)
into eqn (51) and using eqn (40), the total potential energy, [1,, may be written as

L ) PILA(B1) (27 +34)
M, = t } - s 52
! 4[”( )(/ )1+GJ < )U - 6an EI >2)
in which 1, and J, are defined as
I . IH) 53
[ B /\ ( )

"n 77!-
Jy=Jy+ - 1 Z Jot,sin? Z J, b, sin’ 0 ) (54)

-
Here, & is defined as

| & 21,

s 2z, ¥
= * 16- it P I—' > Y
k=1— -,}_:‘ l\(,(l+ )( : L)( cos )

1 2, b, 2z Y
- — e 4
_’Z ()Hp)(l() L)<I cos ™ )

N 2nz
—y (I 6_‘,—L')(l—cos «-f’"f)
f??l u(|+1 +1) r 7 L (55)
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in which

L /n*+34
ko= T ( n;") (56)

The underlined terms in eqn (55) indicate the effects due to the web stiffeners and batten
plates. The coefficient 1,2 in these terms also appears to be due to the change. such that
each X* indicates the sum for the total span. At the critical load the first variation of I,
must vanish, Hence, the critical load. P.is

Y EL, 2n
= 4(1) \/(n2+34 [EF(J *G"D e

and the critical moment yields

PL 2 7\
M=t =047 ({)\/(El. [El" <Z‘) +GJ‘:D. (58)

Now, if the effects duc to the web stiffeners and batten plates are neglected, the relations
I, — 1, and J, = J, are valid, and the result has the coeflicient 0.474 for the coefficient
1.04 given by Salvadori (1956).

Then, in order to cover this difference, the following approximate function which is
more accurate for ffis selected :

= (I —cos 2Z:>+/:2 (1 —~cos 42;) (59)

Substituting egn (59) into eqn (51), the current total potential energy may be written as

n,.-l‘{Lr[(fm (’ )4+</” ( ﬂ
[J B (7 ) NTAE ( >1+"J*”‘ b ( )(4Z>]

- P[’-!L- (o ko (B 2k (B) 22,k B /32]} (60)

inwhichJ,(n = 1,2).J,;,and &, (n = 1, 2and m = 1,2) are defined as

Jo=dut ZJ: n(-""‘") ZJh (2"”'"') (forn=12) (61
=Jau L St L L sin” L =1,

Ll i=

2nz,\ | [4nz,
7 )sm( 7 ) (62)

2 ; . 27[:.([ . 47{:,5 2 5 R
Jia = i }_:‘J, t, sin (T)sm( a )+ Zi; J, b, sin (
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1 1 T, . 2n: 2mn:z,,
S R T 16z~ L") | I —cos ")(l-—cos-*—‘—)
Kom = 1 216L"1,,,,,|:, ,|+1‘ ‘ )< ST L

/

4 nnz Zmnz
b, 31 e 3y w
+Z (lé_p, L )(1 cos — )(l cos — )

0 2t +2,b, . ( 3 Znn:g,,,)( : M“‘P‘)
Z T+, (16:z3, LY 1 cos = || 1—cos =

(forn=12andm=1,2) (63)
and x,; = 0.0694519, x,, = ~0.00891373 and 2,, = —0.0226534. For simplicity the under-

lined term in eqn (60) is neglected. At the critical toad the first variation of I with respect
to §, and f; must vanish, Hence

(-,nn

apy B a,—x, kP —%y: k42 Py ﬁl]
l}n:g - —%y.ky2 Py ay—22 ks Py B

B,

]

0 (64)

in which notations a,, a,, and P, are defined as

(N [2mY
a,=£F(L)+OJ’,(L) (65)
—er (Y vou (1) 66
, = L +l [: ( )

PL
p=tE 67
'S El, (67)

It equilibrium is to correspond to a deformed configuration, the determinant of eqn (64)
must vanish. Hence

[tk an k= (k) 1P~ (2 k20 k)P e ay = 0. (68)
Dividing eqn (68) by («,)* and using notations k. = a./a, and P, = P,/a,, one has
(ki ko= (k) 1P = (2 k2 k) Po+ k=0 (69)

Sotving eqn (69) for P,, the critical moment M yields

M = J,;f;, (’Z) \/ (r /[ ET (1) +GJ, D (70)

In order to examine the accuracy of eqn (70), show the critical moment for steel 7 beam
H—-100x50x5x7, E=2.1x10" kgl cm ~*, Poisson’s ratio v = 0.3, and L = 200 cm. For
the beam without web stiffeners and batten plates the torsional constant GJ, reduces to
GJ,. the value of P, is 62.5 kgf =" and the critical moment becomes

M= 0.99(-25)\/<£1,.ﬂ[5r<;)#GJQD y
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The result is nearly the value 1.04 given by Salvadon. The difference will be covered by
using an approximate function, which is more accurate for §; however, the expression will
be complicated.

8. NUMERICAL RESULTS

The lateral buckling of a doubly symmetric and uniform 7 beam with web stiffeners
and 'or batten plates has been discussed. The obtained critical moments and critical loads
have taken the same forms as the original beams without the web stiffeners and batten
plates as the moment of inertia and the torsional constant are replaced with ones of original
I beams without web stiffeners and batten plates. Both the appropriateness of the derived
critical moments and critical loads and the behavior of lateral buckling of the beam with
web stiffeners or batten plates are clarified through the numerical calculations. Data used
in numerical calculations take the following values : steel fbeam H—100x 50x 5x 7 (h = 10
cm. B=35 cm, t, =05 cm, ¢, =0.7 cm). Young's modulus £ =2.1x10° kgf cm~*
(29.8683 x 10* [bin~ %), Poisson’s ratio v = 0.3, L = 200 cm (78.7402 in), 1, = ¢, = t,=0.5
cm (0.1969 in.), a = b, = 2.5 cm (0.9843 in.). The variations of the locations of the web
stiffeners and the batten plates take each of five types. namely. S1-S5 for the web stiffeners
and C1-CS5 for the batten plates, as shown in Fig. 5. All shapes of the web stiffencrs and
batten plates are symmetric with respect to the y axis.

The critical moments in Tables 1-5 are nondimensionalized with the critical moment
of the original beam without web stiffencrs and batten plates. Type | in Tables 1-5 shows
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Fig. 5. Specimens in numerical caleulution.

Tuble 1. Critical moments for a simply supported { beam with web stiffeners
or batten plates (uniform bending)

Critical moments
Cuse Type 1 (M/M,)) Type 2 (M/M,)) Relative error (%)

(0] 1.0 1.0 0

Si Lols 1.000 1.48
S2 1.217 1190 2
53 1.375 1.354 1.53
S4 [.462 1446 1.09
S5 L6344 1.634 0

Cl 1.063 1.00) 593
C2 1.713 1.567 8.52
C3 240 1.978 5.90
C4 2.290 2.194 119
Cs 2613 2.613 0

Type {: Considers the variation of /, due to web stiffeners or batten plates.
Type 2: Neglects the variation of /, duc to web stiffencrs or batten plates.
Relative error = (type | —type 2)/type 1.
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Table 2. Critical moments for both ends fixed / beam with web suffeners or
batten plates (uniform bending)

Critical moments
Case Type L (M M, Type 2 (M M, Relative error (%)

0 1.0 1.0 0

Si 1.015 1.000 1.48
S2 1.397 1.387 0.72
S3 1.493 1.493 0

S4 1.458 1.454 0.27
S5 1.030 1.000 291
Cl 1.063 1.000 593
c2 2120 2.088 307
C3 2.30m2 2.302 0

C4 2.2 2.211 1.21
Cs 1.125 1.003 10.84

Type 1: Considers the vartation of /, due to web stifteners or batten plates.
Type 2: Neglects the vaniation of 7, due to web stiffeners or batten plates.
Relative error = (type | —type 2),type 1.

Table 3. Critical moments for a simply supported 7 beam with web stiffeners
or batten plates (concentrated load)

Critical moments
Case Type L (M M) Type 2 (M M, Relative error (V)

O [0 10 0

Sl [.004 1.000 (.40
S2 1.19% 1190 0.67
S3 1.361 1354 0.51
S4 1452 1446 0.4
SS 1.634 1.634 0

'l 1.020 [.O000) 1.96
2 1.621 1.567 3.33
(R} 2029 1978 251
4 223 2194 1.88
[Qh 2603 2613 0

Type |: Considers the variation of /, due to web stiffeners or batten plates.
Type 2: Negleets the varation of 7, due to web stitleners or batten plates.
Relative error = (type | —type 2)/type L

Table 4. Critical moments for both ends tixed / beam with web stitleners or
batten plates (concentrated load)

Critical moments
Case Type (M M, Type 2 (MM, Relative error (%)

O 1.0 1.0 0

St 1.006 1.000 0.60
S2 1.397 1.387 0.72
S3 1.499 1.493 0.40
S4 1.457 1.454 0.21
S5 1.000 1.000 0

Cl 1.030 1.000 291
2 2134 2058 370
3 2346 2,302 .86
4 2233 2211 0.99
Cs 1.003 1.003 0

Type |: Constders the variation of £, due to web stiffeners or batten plates.
Type 20 Negleets the variation of 7, due to web stitfeners or batien plates,
Relative error = (type [ —type 2) type 1.

the eritical moments considering the ceffects duce to the web stiffeners and the batten plates
on the moment of inertia about its weak axis. Conversely, type 2 shows the critical moments
neglecting these effects.

Table 1 shows the critical moment of simply supported 7 beams with web stiffeners or
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Table 5. Critical moments for both ends fixed / beam with web stiffeners or
batten plates (concentrated load)

Critical moments
Case Type (M M, Type (M. M,,) Relative error (%)

O 1.0 1.0 0
S1 1.000 1.000 0
S2 1.386 1.386 0
S3 1.493 1.493 0
S4 1.453 1.453 0
S5 1.000 1.060 0
Cl 1.000 1.000 0
C2 2.054 2.054 0
C3 2.300 2300 0
C4 2209 2.209 0
Cs 1.003 1.003 0

Type 1: Consider the variation of /, due to web stiffeners or batten plates.
Type 2: Neglects the variation of /, due to web stiffeners or batten plates.
Relative error = (type | —type 2)/type L.

batten plates, subjected to uniform bending. Judging from their relative errors, the effect
due to the web stiffeners on the moment of inertia about its weak axis is negligible in
practice. Similarly, as the number of the batten plates is less, the effect due to the batten
plates on the moment of inertia about the weak axis may also be neglected. However, the
cffects due to the web stiffeners and the batten plates on the torsional constant cannot be
neglected. Hence, since the effects due to the web stiffeners and the batten plates on the
torsional constant are remarkable, the effective location of the web stiffencers and the batten
plates for the lateral buckling is governed by the value of the function cos® (nz/L) in cqn
(25). For the least laterad buckling mode, web stiffencrs and batten plates are the most
cffective as their locations approach both ends, because the local increments of the torsional
constant due to the web stiffeners and the batten plates are considered to constrain the
rotation angle f# at both ends.

Table 2 shows the critical moments of both ends fixed 7 beams with web stiffeners or
batten plates in uniform bending, The effects due to the web stiffeners and the batten plates
on the moment of inertia about its weak axis can also be neglected in practice. However,
the effects due to the web stiffeners and the batten plates on the torsional constant cannot
be neglected. Hence, the effective locations of the web stiffeners and the batten plates for
the least lateral buckling mode are determined from the value of the function sin® 2rz/L).

Tables 3-5 indicate the critical moments for both the simply supported beam and the
both ends fixed beam, subjected to a concentrated load at midspan ; Table 4 indicates values
calculated from egn (58) and Table 5 indicates values from eqn (71). Similarly, the effects
duce to the web stiffeners and the batten plates on the moment of inertia can be neglected
in practice. Namely, the underlined terms in eqns (44), (55), and (63) can be neglected.
Therefore, the effective locations of the web stiffeners and batten plates are determined
from the values of functions cos® (zz/L) and sin® (2nz/ L), respectively, making the torsional
constant J, a maximum. On the other hand, although the values of Table 4 are slightly
larger than the values of Table 5, the difference is negligible in practice. Hence, when one
considers the ratio of the critical moment including the effects of web stiffencrs and/or
batten plate to the critical moment neglecting the effects, the difference between coefficients
0.474 and 0.99 in eqns (58) and (71}, respectively, has no effect on the ratio of the
critical moments. Then one may use the cocfficient 1.04 given by Salvador instead of these
cocefficients.

The results of Tables 1-4 show that for lateral buckling the batten plates are more
effective than the web stiffeners, because the existence of the batten plates changes the beam
from an open cross section to a closed cross section.

Figure 6 indicates the values of functions cos’ (rz/L) and sin’ (2rz/L) determining the
effective location of the web stiffeners and batten plates.
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Fig. 6. Values of cos” (nz/L) and sin” (2nz L),

9. CONCLUSIONS

The lateral buckling of a doubly symmetric and uniform / beam with web stiffeners
and,’or batten plates has been generally presented by means of the function extending the
Dirac function. The proposed critical moments have the same forms as ones of the original
beam without web stitfeners and batten plates, moditying both the torsional constant and
thc moment of inertia about the weak axis. In practice, it has been clarified from the
numerical results that the effects due to the web stiffeners and batten plates on the moment
of inertia about its weak axis can be neglected. but the effects due to them on the torsional
constant cannot.

Concerning the factor influencing the lateral buckling of { beams, the positive factor
and the negative factor are considered. The former is the web stiffeners and batten plates
considered 1n this paper; the latler may be considered as web opening.

For beams with web opening, a similar method will be applied to the moment of inertia
about its weak axis. However, since there is no variation of the torsional constant due to
web opening, and since the variation of the moment of inertia about its weak axis can be
neglected in practice, as stited in this paper, the expression of the lateral buckling of the
beam without web opening is applicable to the beam with web opening.

Uniform beams with a solid section or closed section can be considered to be beams
in which web stiffeners or batten plates, respectively, derived in this paper are continuously
distributed throughout the whole of the span. Then, the well-known governing equations
for the beams with these sections will be casily introduced from the theory derived here by
considering that the Dirac functions d(x —x,,) and d(x —x,,) exist continuously throughout
the whole of the span of the beams. Also, for the lateral buckling of inclastic beams or ol
non-uniform beams, the method presented here will be applied.

The proposed result will be necessary to compare with experimental values. If a
difference between the proposed result and experimental results exists, it will be based on
the effective region of stiffnesses produced by web stitfeners and batten plates. In this paper
this effective region has been assumed to be the thickness ¢, for a web stiffener or the width
b, for & batten plate. If the proposed result is modified by a coeflicient selected to have the
good agreement with experimental values, it will be made perfect.
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