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.-\bstraet-This pilper presents a general discussion of the lateral buckling of uniform and doubly
symmetric I beams with web stifTeners and batten plates. In order to e:<press generally the lateral
buckling strength of the I beam. whether with or without the web stilTeners and,or batten plates. a
function e.:<tending the Dirac function is used. The critical moments derived from the energy method
take the same equations as ones for the original I beam when the torsional constant and the moment
of inertia about the weak a:<is of the I beam with the web stilfeners and or batten plates arc
e:<changed for those of the original I beam. The numerical results show that. in practice. the effects
due to the web stiffeners and batten plates on the moment of inertia about the weak a:<is can be
neglected. but the elTects due to those on the torsional constant cannot be neglected. This paper
demonstrates mathematically the phem1menon that the web stiffeners and batten plates increase the
critical moment of beams.

I. INTRODUCTION

Lateral buckling of uniform beams without web stilli:ners and batten plates has been studied
by. for example. Vlasov (1936). Timoshenko and Gere (1961). Galambos (1936). Salvadori
(1956) and Bleich (1952). However. in practice. beams arc accompanied by web stifTeners
and/or batten plates. and it is generally known that web stilTeners and batten plates increase
the lateral buckling strength of beams. This increase is considered to be due to the local
increment of both the torsional stiffness and the bending stiffness resulting from the usc of
weo stiffeners and/or batten plates. Nevertheless. the present trends in structural design
systems neglect the clrccts due to weo stiffeners and oatten plates on lateral ouckling. Also.
the relationship between beams with and without web stilli:ners and/or batten plates in
terms of lateral ouckling is not dear.

Although Vlasov (I tJ36) discusses a design method for beams with web stilli:ners and/or
oatten plates. there is no mention oflateral buckling. and the design method is not practical
bec;tuse of the complicated equations. Thus. although there arc a lot of papers dealing with
the lateral buckling of uniform! beams. there arc few studies dcaling with the lateral
ouckling of thc ! bcams with web stiffcners and/or battcn platcs.

The purposc of this paper is to givc a gencral view of thc latcral buckling of a uniform
and symmetric! beam with wcb stilli:ncrs and/or battcn platcs. In order to obtain a general
dcscription of thc latcral buckling of a beam. whcther with or without the web stiffeners and
the batten plates. the local effects duc to web stiffeners and batten plates are expressed by
using a function extending the Dirac function. The lateral buckling of ! beams with web
stitli:ners and batten plates is presented by using the energy method; and the obtained
equation will be similar to the well-known equation of! bcams without web stilfencrs and
batten plates whcn the torsional constant and thc moment of incrtia about the weak axis
of the bcam arc exchanged for those of the original! beam. Next. thc expressions presented
for the lateral buckling arc verified by numerical calculations.

2. BASIC ASSUMPTIONS

In analyses the following assumptions arc used.

(I) The beam is a doubly symmetric and uniform! beam.
(2) The in-plane distortion of the transverse cross section. the initial imperfection. and

the residual stresses are neglected.
(3) The lateral buckling is in an clastic region.
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Fig. I. Coordinates of a beam with web stiffeners and batten plates.

3. TORSIONAL CONSTANT Al'D MOMENT OF INERT\.-\ OF A BEA\t

Consider a doubly symmetric and uniform f beam with web stiffeners and batten plates
as shown in Fig.l. in which the members and location of the web stiffeners and batten
plates can be taken arbitrarily. The Cartesian coordinate system is employed. in which the
axes x and yare the principal axes of the beam. and the axis: passes through the centroidal
axis of the beam.

The torsional constant. J. and momcnt of inertia about its weak axis. f,. at each point
where the web stiffener or batten plate is located increase locally due to thc web stiffener
or batten plate. The moment of inertia about its weak axis. 1,. and the torsional constant.
J. of the beam in which a web stil1cner is located at : = :" and a ballen plate at : = :1'"
may be expressed generally as

\ I'

I, = l,n + L I" f)(: - :,,) + L 1
"
.0(: - :/,,)

I 1 1- t

\' I'

.I = .II) + L ./, f)(: - :,,) + L .II' f)(:.- :/0,)
I I ,--I

( I )

(2)

in which I,n is the moment of inertia ahout the weak axis of the I healH without the web
stillcners and ballen plates. I" the moment of inertia ahollt the weak axis due to a web
stillcner located at : = :,,; I,I' the moment of inertia about the weak axis due to a batten
platc located at : = :/,,; J o the torsional constant of the I beam without web stiffeners and
battcn plates; J, the torsional constant due to a web stifTener located at == :,,; Jp the
torsional constant due to a batten plate located at : = =I'i; ="'i the distance of the middlc
point of thickness of the ith web stiffener; :/" the distance of the middle point of width

\ I'

of the ith ballen plate; L the sum for the total number. s, of web stillcners; and L the sum

for the total number. p, of ballen plates. Also. D(= -:,,) is defined as a function in which
the Dirac function <5(: - :,,) exists continuously in the region of thkkness. r,. of the ith web
stiffcner. namely. the region from :,,-1,/2 to =,,+rj2. Similarly, D(:-:/,,) is defined as a
function in which the Dirac function 6(: - :1',) exists continuously in the region of width.
hI" of the ith ballen plate. namely. the region from =/,,-111'/2 to =/.• +hl'/"2. Brielly, function
D is considered to be the sum of the Dirac function J distributing continuously in the given
region. The detail and employment of the Dirac function arc given in Mikusinski and
Sikorski (1957) and Fryba (1972). respectively.

In order to state brielly the subsequent development, it is assumed that each shape of
the web stiffeners and batten platl.:s at an arbitrary point of till.: I bl.:am is symmetric with
respect to the y-axis. as shown in Fig. 2. Hence. each web stilfenl.:r and each batten plate
make a pair at points where they arc located. The transverse cross section of the I beam at
the point where a pair of web stiffeners is located is translated from the I section to the
solid section due to the existence of their web stiffeners. Hence. the torsional constant. J,.
due to their web stillcners ean be obtained by subtracting the torsional constant of the
original f beam from the torsional constant of the solid section. On the other hand. the
transverse cross section of the I beam at the point where a pair of batten plates is located
forms the closed cross section by the I beam and their batten plates. Hence. the torsional
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Fig, ::!, Web stilfeners and batten plates,

constant. Jr' due to their batten plates. is obtained by subtracting the torsional constant of
the original I beam from the torsional constant of the closed cross section, Meanwhile. the
increments of the moments of inertia due to a pair of web stiffeners and a pair of batten
plates arc easily obtained from a consideration of the increments due to their web stilTeners
and batten plates. respeclively. Hence. the lorsional constants. J, and JI" and the moments
of inertia. II, and II," are given as

J,
4a I

:I (t,) (3)

:!.h(2a)l :!./ll,:
1.,= 12 12

in which the constantfl takes the following value from Utogueh (1968):

(4)

(5)

(6)

(7)

in which constants a. h. (,. I". h. Ii. Ii are indicated in Fig. 2. Here. eqns (3) and (4) are
e:lsily obtained from Gjclsvik (19X I).

Since the web stifTeners and batten plates :lre located discontinuously in the beam. they
do not have enough stifTness in the axial direction. Therefore, the web stiffeners and the
batten plates may be assumed to have no effect on warping in practice. and the warping
constant. r. can be taken as the value of the original I beam. namely

lic
r = 24 8 ' (r. (8)
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Fig. J. Laler~11 buckling of I ocam in pure bending.

4. BlTKLli':G OF SI\IPLY SCPPORTED I BEA\IS Ii': UNIFORM BENDING

Consida the lateral huckling of the I beam. subject to a uniform bending moment. M.
as shown in Fig. 3.

From eqn (5.87) of Chajes (1974). the total potential energy. no, stored in the beam
during buckling is given as

(9)

in which II is the displacement in the x direction, 1/ the angle of twist ahout the: axis. E
Young's modulus, G the shear modulus, and L the span length of the beam. Primes indicate
ditrerentiation with respect to :. Substituting eqns (I) and (2) into eqn (9) yields

I fl.{[, I' ]
nl/=") E l,o+LI..,f)(:-:")+LI'I'f)(:-:,,,) (II")!

- (I I - I I - I

+ LT un! + ({11l +,II 1, f)(: - :,,) + ';1 11' f)(: - :1")]Ur)! - 2"-111' II'} d:. (10)

The ends of the beam are assumed to he restrained against twisting and lateral trans­
lation, but free to warp and free to rotate about the principal axes. The analytical formula­
tion of these boundary conditions is

/I = /I" = O}
II = tr' = () at : = 0 and L. ( I I )

[n orlkr to prcscnt briefly thc subscqucnt dcvelopmcnt, the buckling dcformations /I and f/
satisfying eqns (II) arc approximal\:d as

n­
Il = /II sIn L

re­
I/ = 1/ I sin ­

L

in common with Chajes (1974).
Substituting eqns (12) and (13) into eqn (10). the total energy, n/l, yields

in which 1'.1 and 1 1 are defined as

( 12)

( 13)

(14)
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Using the following formulas for the Dirac function J
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(15)

(16)

f J(:-M(:)d: =Ew for ~ < a < b

for a < ~ < b

for II < b < ~

( 17)

the terms im:lmling fllm:tion Din cqns (15) and (16) occOlm:

J, [ L. (rr t.,) (2rr:.")J= ')"/, 1+ ...... sin .-_. cos --- .
_ rtt, L L (18)

In order to obtain the appro,'(im;ltion of elJn (18), expanding sin (It tJL) in power series,
eqn () 8) can be rewritten as

f L (rt-)
o J, D(: - :,,} cos1 i <.1:

J, { [ I (rt 1,)1 I (rr (,)~ J (21! :.,,)}
= 2 I, ) + 1 - 3! 'L + 5! L +. .. l.:OS L . ( 19)

Since this series converges very r;'lpidly. till; consideration of the first term of the series gives
an accural.:Y sullkicnt for an practk'll purposes. l-knl.:c. the approximation of cqo (18) m.1Y
be written as

fl. , (It:) .(n:.,)
oJ,lJ(=-=,,)COY L d=~J,t.cos- L .

Similarly. one can obtain the following expression:

fl. . • (It:) ..(n:.,)
11 I .., D(: - =,,) S1O" L d= ~ I .. I, sm' L .

(20)

(2\ )
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From eqns (20) and (21 I. the function D has the followin~ appro.ximate relations with
the Dirac function (i:

D(::-::,,) ~ I, (i(::-::,,)

Using these relations. egns (15) and (16) can be expressed as

1'.1 = I'll + ~ ±lIs Is sin~ (rr2;) + ~f I,p bpsin~ (rr;:,)
1= 1 r= 1

(22)

(23)

(24)

(25)

in which the underlined terms indicate the ctfects due to the web stitfeners and batten plates.
If the web stitl'cners and batten plates have the same shapes. the moments of inertia. 1" and
1,1" and the torsi()(lalwnstants. J, and J". due to the web stitl'cners and the batten plates.
respectively. become constants.

The critical moment. M. is reached when neutral equilibrium is possible. and the
requircment for neutral equilinrium is that the derivatives of nil with respect to 1/1 and {I,
vanish

(26)

(27)

If the equilibrium is to correspond to a deformed contigunltion. the determinant of cqns
(26) and (27) must vanish. Hence. the critical moment. M. may be obtaincd as

(28)

Now. if thc etl'ccts duc to the web stitl'cners and the nallen plates in both the moment of
inertia and torsional constant arc neglected. the relations 1'1 ---1'0 and J 1 --- ill arc etrcctcd
and cqn (28) yields

(29)

and the result agrees with cqn (5.96) of Chajes (1974).

5. BUCKLING OF BOTH ENDS FIXED I IlE'\~IS IN (j:\IFOR~1 IlENDI:"G

A mcmber is now considered. the ends of which arc free to rotate anout thc horizontal
axis. but fully restrained against all other displacements. Hence

1/ = 1/" = O}
{f = If' = ° at :: = 0 and L. (30)
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In common with Chajes (1974). u and Psatisfying eqns (30) are approximated by

( 27t=)
U = U I I - cos L--

( 2rr=)P= (3 I I - cos L .

1009

(31)

(32)

Substituting eqns (31) and (32) into eqn (10). the total potential energy. Os. stored in the
beam during buckling may be written as

(33)

in which the cross sectional constants. f 'l and J j • may be expressed as

(34)

(35)

by using eqns (22) and (23) as approxitll~lte expressions for funl:tion D. The underlined
terms in eqns (34) and (35) indic.:ate the cllccts due to the web stillcners and the batten
plates.

The critical moment. M. is determined from the requirement for neutral equilibrium
that the derivatives of II II with respect to III and #1. respectively. must vanish. Hence

(36)

Now. if the ellccts due to the web stiffeners and batten plates in the moments of inertia
and torsional constant arc neglected. relations f,.j -+ 1.. 0 and J I -+ J ll arc valid. and the result
agrees with eqn (5.103) ofChajes (1974).

6. BUCKLI:-.JG OF SIMPLY SUPPORTED I BEAMS IN CONCENTRATED LOAD

Consider the lateral buckling of the simply supported f beam wilh the web stiffeners
and batten plates subjected to a concentrated load. P. at the midspan. as shown in Fig. 4.

I-.l..-I1 !p

~~_·~·-t
j 'x L I
y

pto p

Fig. 4. Laleral huckling of I hcam with concentraled load.
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It is assumed that the concentrated load. P. is applied at the centroid of the cross section
and that the load remains vertical as the beam buckles. The employment of this assumption
simplifies the expression of the potential energy done by the external load. P. Fukumoto
(1982) does not take this assumption into consideration when he discusses the lateral
buckling of I beams without web stiffeners and batten plates.

The current total potential energy. nB • stored in the member during buckling IS

obtained as

(7)

from eqn (5.108) of Chajes (197"). It is desirable to express 1/ in terms of (1 and thus reduce
the number of variables in the problem. Now. if the current flexural and torsional boundary
conditions of the beam arc assumed to be eqns (II). then the relation

1/"
P:: (1

2EI,

can be applied from eljn (5.109) of Chajes (197"). Substituting eljns (I). (2) and (.IX) into
eqn (7). the total potential energy. nil. yields

f ' 1" ::' If'

-" 4/{I,,, +,I, 1,,0(0- ',,)+.f/" 0(0- ',,,)f"
In the above equation function D appears in the denominator. This may be written as

/'

1.0+ L I ... D(::-::,,)+ L I,/,D(::-::/II)
,-- J I I

I ,[ I I ]
= +')* - D(::-::,,)

I, 1\ ~ I 1'1\ + I" 1'0

I' [I IJ+)* - /)(::-::/11)
~ I 1,0 + 1,/, 1,1\

'I' [I IJ+)* - D(::-::,/II)
~ I 1,0 + I" + 1,/, 1'0

(YJ)

("0)

from the definition of the Dirac function. in which ::'/11 indicates the coordinate value of,::

at the point where the web stiffener and the batten plate arc located at the same point. I*
I'

is the sum of web stilfeners at a different location from the batten plates; I* the sum of
'p

batten plates at a dilli:rent location from the web stilli:ners; and L* the sum of both web

stiffeners and batten plates. when they arc located at the same point (i.e. ::" = ::111 )'

Equation (13) is used for the approximate function of {i satisfying the current boundary
conditions. Substituting cqn (13) into eqn (9) and using eqn HO). the total potential
cnergy. nil' may be written as
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in which Irl and J, become

I _1"0,-­, k

1011

(41)

(42)

(43)

by using the approximate relations. namely, eqns (22) and (23), Here, notation k is defined
as

1~. !X, (, ( • 1t;:.,,)~
k = 1- 2~ I [,;(l+-;} ;:,; Sin L

(44)

in which notations k ll, !X" and !Xp are defined as

(45)

(46)

The underlined terms in eqn (44) indicate the effects due to the web stiffeners and batten
plates. The coellicient 1/2 in these terms appears due to change in the integral region from
the half span of the beam to the total span. such that each t* indicates the sum for the
total span.

The condition that at the critical load the first variation of no must vanish gives the
following critical load, P:

( 1r)~J(3E I" [(1t)~ J)P = 4 L ~T+-6 E r i +G J I . (47)

Now, if the effects due to the web stiffeners and batten plates arc neglected. the relations
I" -- I,ll and J I -- J l) are valid. and the result agrees with eqn (5.115) of Chajcs (1974). The
critical moment for the critical load yields
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PL rr!( [(rr)~ J)M=-4=1.36 L'./ EI,I Er L +GJ 1 • (48)

7. BL"CKLING OF BOTH ENDS FIXED I BEAMS IN CONCENTRATED LOAD

Consider the lateral buckling of both ends fixed I beams with web stiffeners and/or
batten plates. subjected to a concentrated load at the midspan. The current flexural and
torsional boundary conditions are given by egn (30).

Using the above-mentioned assumption for the concentrated load, P. the total potential
energy. OB' stored in the member during buckling is given by

(49)

In order to express Ii by /3. employing the following relation in egn (49)

(50)

the total potential energy may be rewritten as

(51 )

Now. as for the approximated function for {/ satisfying the boundary equations given
in elfn (30). the function given in eqn (32) is adapted. Substituting eqns (I). (2). and (32)
into elfn (51) and lIsing elfn (40). the total potential energy. fl/l. may be written as

in which I" and J 1 are defined as

1'0
1,1 = k

l' ("
rr -) "" ("rr - )J 1 = J o+ ~ L J,I,sin! -~" + i L J"h" sin! -.-," .

,_ 1 ,.1 L

Here. k is defined as

I·f :X, I, " ( 2rr ;:,,)!
k = I - 1 L· k (I ) ( 16;:,~ - L") I - cos L_,.1 () +:x,

(52)

(53)

(54)

(55)



in which

Lateral buckling of I beams with web stiffeners and batten plates 1013

(56)

The underlined terms in eqn (55) indicate the effects due to the web stiffeners and batten
plates. The coefficient 1,2 in these terms also appears to be due to the change, such that
each r* indicates the sum for the total span. At the critical load the first variation of nB

must vanish. Hence, the critical load, P, is

(21t)1 J( Ef,_, [(21t)~ J)
P=4 L ,.1+34 Er L +GJ1

and the critical moment yields

(57)

(58)

Now, if the effects due to the web stilTeners and h..ltten plates are neglected, the relations
I" -+ f,o and J, -+ J o are valid. and the result has the coellident 0.474 for the coelftdent
1.04 given by Salvadori (1956).

Then. in order to cover this dillcrem:e, the following approximate function which is
more accurate for II is sdected :

(59)

Substituting eqn (59) into eqn (51), the current total potential energy may be written as

in which I n (II = 1.2), J l~. and knm (n = 1.2 .md til = 1,2) arc defined as

2' . , (2t11t=,,) 2 P • , (2tl1t=I")J = J + . 2: J t sm' ------- + -- 2: J h sm'--- (for tI = 1.2)
n II L,~," L L

i
_, I' I' L

(60)

(61 )

(62)



1014 H. TAKABA TAKE

I I [~:x, t, ' ,( 2n:::,,) ( 2mrr:::,,)
kn,"=I-:; J 2..: (16:::;,-L-) I-COST I-cos-L-_ 16L :Xn'" ,= I 1+ :x, .,

P :x h , ,( 2nrr:::,,) ( 2m1!::: ,)+L:*22..(\6:::p,-L-) I-cos--' I-cos--P
,= I I +1.p L L

(for n = 1,:2 and m = I, 2) (63)

and :x" = 0.0694519, 1.!! = -0.00891373 and '1.1! = -0.0226534. For simplicity the under­
lined term in eqn (60) is neglected. At the critical load the first variation of Os with respect
to PI and p! must vanish. Hence

in which notations ai, a!, and PI arc defined as

(64)

(2rr).j (21!)!
al = Er L +GJ I L

P~ L!
PI =

E l,n

(65)

(66)

(67)

If equilibrium is to correspond to a deformed configuration, the determinant of eqn (64)
must vanish. Hem:e

Dividing eqn (68) by (al)! and using notations k! = a!/al and P! = P,/al' one has

Solving eqn (69) for p!, the critical moment M yields

Jp! (21t) J( [- (21t)! J)AI = . 8 l.. E I,n I~ r 'f.. + G J I • (70)

In order to examine the accuracy of eqn (70), show the critical moment for steel I beam
H -100 x 50 x 5 x 7, E = 2.1 X loh kgf em -!, Poisson's ratio \' = 0.3, and L = 200 em. For
the beam without weh stiffeners and batten plates the torsional constant GJ I reduces to
GJn, the value of P: is 62.5 kgf I and the critical moment becomes

(7\ )
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The result is nearly the value 1.04 given by Salvadori. The difference will be covered by
using an approximate function. which is more accurate for fJ; however. the expression will
be complicated.

8. NUMER[CAl REselTS

The lateral buckling of a doubly symmetric and uniform I beam with web stiffeners
and:or batten plates has been discussed. The obtained critical moments and critical loads
have taken the same forms as the original beams without the web stiffeners and batten
plates as the moment of inertia and the torsional constant are replaced with ones of original
I beams without web stiffeners and batten plates. Both the appropriateness of the derived
critical moments and critical loads and the behavior of lateral buckling of the beam with
web stiffeners or batten plates are clarified through the numerical calculations. Data used
in numerical calculations take the following values: steel I beam H - 100 x 50 x 5 x 7 (h = 10
em. B = 5 em. I~ = 0.5 em. I, =0.7 em). Young's modulus E = 2.1 X IO/i kgf cm - Z

(29.8683 X 101i Ib in- z). Poisson's ratio v = 0.3. L = 200 em (78.7402 in). I~ = I, = Ip = 0.5
em (0.1969 in.). a = hp = 2.5 em (0.9843 in.). The variations of the locations of the web
stiffeners and the batten phltes take each of five types. namely, S I-S5 for the web stiffeners
and C I-C5 for the batten plates. as shown in Fig. 5. All shapes of the web stiffeners and
batten plates are symmetric with respect to the y axis.

The critical moments in Tables 1-5 are nondirnensionalized with the critical moment
of the original beam without web stilTeners and batten plates. Type I in Tables 1-5 shows

51 I II
1t::·::::::I..=-t!===!!:==J

4

5 I !b:=;=~==
1-- r

CASE 0

52 I II
14 ' I.-I

J

'=====11 I
I-l--j

Cl c:JJ I
)--1 ---1

1
C2~

l--~-l

J

C J crr::::o::J
I~:"-l

CI, OJ ID
l-~-l

"
5~ I. II II

1-1=-L 1

Fig. 5. Spcdmclls in numeril::al calculation.

Table I. Critical moments for a simply supportcd 1 beam with wcb stiffencrs
or ballell plates (lI11ili.lrm bending)

Critical moments
Case Type I (,\('.\/",) Type 2 (M/M,,,) Relative error (%)

0 1.0 1.0 0
SI 1.015 1.0(JO IAll
S2 1.217 l.l'iO ., .,.,
S3 1.375 1.354 1.53
54 IA62 1.446 IO'i
55 1.634 1.634 0

CI 1.063 1.000 5.93
C2 1.713 1.567 8.52
C3 2.102 1978 5.90
C" 2.290 2.19" ·tt?
C5 2.613 2.613 0

Type I : Considers the variation of I, due to wch stiffeners or hallcn plates.
Type 2: Neglects the variation of I, duc to web stiffeners or ballen platcs.
Relative error == (type [ -type 2)/type I.
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Table 2. Critical moments for both ends thed I beam with web stiffeners or
batten plates (uniform bending)

Critical moments
Case T}pe I 1.\1 .Ho I) Type 2 (.H J/" I Relative error (%)

0 1.0 1.0 0
51 1.015 1.000 I.~S

52 1397 US7 072
53 1.~93 1.~93 0
5~ lASS 1.~5~ 0.27
55 1.030 1.000 2.91

CI 1063 1.0()0 5.93
C2 2.120 2.055 307
C3 2.302 2302 0
C~ ~.2JX 2.211 1.21
C5 1.125 1.003 IOS~

Type I: Considers the variation of I, due to web stitlcners or batten plates.
Type 2: Neglects the variation of ( due to web stitTeners or hatten plates.
Relative error = (t}pe 1- type 21, type I.

Tahle 3. Critical moments f,'r a simply supported I beam with web stiffeners
llf hatten plates (clll1l:entrated Illad)

Criti..:al nll111K'nts
Case T}pe I ( H .H,,,) Type 2 (.H ,H,,, I Rel;ltive errllr ('~n)

0 10 10 0
SI 1.004 1.000 OAO
S2 I I'll' I I')() (U,7
S.1 11hl 1.15~ 0.51
S4 1452 144h lUI
S5 Ih.1-I Ih.14 0

('I 1.020 1000 1.')(,
('2 Ih21 1:\(,7 .1 ..1.1
('1 2(21) 11ns 2.51
('4 ~.2HI 2.1 ')·1 I.SS
('5 2.(,( 3 2.(,(1 0

Type I: Cllnsiders the vari;llilln of I, due to weh stit1cners or hatten plates.
Type 2: Negle..:ts the variation of I, due to weh stit1cners or hatten plates.
Relative error cc (type I -type 2)/type I.

Tahle: ~. ('riti..:al moments for hoth ends tixed I heam with weh stit1cners or
hatten plates (eon..:entrated load)

Criti..:almoments
Case Type I (.If .Ho ') Type 2 LI/.H,,,) Relative error ('1.,)

() 1.0 If) 0
51 1006 1.000 O.hO
52 1.1')7 1.31'7 072
5.1 fA99 1.493 O.~O

S~ 1.457 1.~5~ 021
55 1000 1.000 0

CI 1.IHO 1.000 2.91
C2 2.114 2055 3.70
('.1 234(, 2..102 1.1'(,
('~ 2.233 2.211 OIN
C5 1.003 (003 0

Type I: Considers the variation of f, due to weh stifTeners or hatten plates.
Type 2: Negle:":ls the variation of I, due to weh stitTeners or hatten plates.
Relative error ~ (t}pe 1- typL' 2) type I.

the critical moments considering the dlCcts due to the wen stiffeners and the batten plates
on the moment orinertia ahout its weak axis. Conversely, type 2 shows the critical moments
neglecting these effects.

Tahle I shows the critical moment or simply supported I neams with web stiffeners or
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Table 5. Critical moments for both ends fixed [beam with web stiffeners or
batten plates (concentrated loadl

Critical moments
Case Type (.\-f'Jfo,l Type (.U,Mo,) Relative error ('Vol

0 1.0 1.0 0
51 1.000 1.000 0
52 1.386 1.386 0
53 1.493 1.493 0
54 1.453 1.453 0
55 1.000 1.000 0

CI 1.000 1.000 0
C2 2.054 2,054 0
C3 2.300 1.300 0
C4 2.209 2.209 0
C5 1.003 1.003 0

Type I : Consider the variation of l. due to web stiffeners or ballen plates.
Type 2: Neglects the variation of [, due to web stiffeners or ballen plates.
Relative error == (type I - type 2)/type I.

1017

batten plates. subjected to uniform bending. Judging from their relative errors. the effect
due to the web stiffeners on the moment of inertia about its weak axis is negligible in
practice. Similarly. as the number of the batten plates is less. the effect due to the batten
platcs on thc moment of inertia about thc weak axis may also be neglected. However. the
eflccts due to the web stiffeners and the ballen plates on the torsiomll constant cannot be
neglected. Hence. since the effects due to the web stiflcners and the batten plates on the
torsional const.mt arc remarkable. the ctfective location of the web stiffeners and the batten
plates for the lateral buckling is governed by the value of the function cos2 (n:!L) in eqn
(25). For the least lateral buckling mode. web stiflcners and batten plates arc the most
ctfective as their locations approach both ends. because the local increments of the torsional
const'lnt due to the web stiffeners and the ballen plates arc considered to constrain the
rotation angle If at both cnds.

Table 2 shows the critical moments of both ends fixed I beams with web stiffeners or
batten plates in uniform bending. The effects due to the web stiffeners and the batten plates
on the moment of inertia about its weak axis can also be neglected in practice. However.
the effects due to the web stiffeners and the ballen plates on the torsional constant cannot
be neglected. Hence. the effective locations of the web stiffeners and the batten pbtes for
the least lateral buckling mode arc determined from the value of the function sin2 (2n:!L).

Tables 3-5 indicate the critical moments for both the simply supported beam and the
both ends fixed beam. subjected to a concentrated load at midspan; Table 4 indicates values
calculated from eqn (58) and Table 5 indicates values from eqn (71). Similarly. the effects
due to the web stiffeners and the batten plates on the moment of inertia can be neglected
in practice. Namely. the underlined terms in cqns (44). (55), and (63) can be neglected.
Therefore. the effective locations of the web stiflcners and batten plates are determined
from the values of functions cos2 (1t:!L) and sin2 (21t:!L), respl.'Ctivcly, making the torsional
constant J 1 a maximum. On the other hand. although the values of Table 4 are slightly
larger than the values of Table 5. the difference is negligible in practice. Hence, when one
considers the ratio of the critical moment including the effects of web stiffeners and/or
ballen plate to the critical moment neglecting the effects. the difference between coefficients
0.474 and 0.99 in eqns (58) and (71). respectively. has no effcct on the ratio of the
critical moments. Then one may usc the coeOicient 1.04 given by Salvador instead of these
coefficients.

The results of Tables 1-4 show that for lateral buckling the ballen plates are more
effective than the web stiffeners. because the existence of thc battcn plates changes the beam
from an opcn cross scction to a closed cross section.

Figure 6 indicates the values of functions cos2 (n:!L) and sin2 (21t:!L) determining the
effective location of the web stiffeners and batten plates.
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9. CONCLUSIONS

The lateral buckling of a doubly symmctric and uniform I beam with web stiffeners
and/or batten plates has been generally presented by means of the function extending the
Dirac function. The proposed critical moments have the same forms as ones of the original
beam without web stiffeners and batten plates. modifying both the torsional constant and
the moment of inertia about the weak axis. In practice. it has been clarified from the
numerical results that the effects due to the web stifleners and batten plates on the moment
of inertia anout its weak axis can be neglected. but the effects due to them on the torsional
constant cannot.

Concerning the fador inlluencing the lateral buckling of I beams. the positive factor
and the negative factor are considered. The former is the web stifleners and b.ltten plates
considered in this paper; the laller may be considered as web opening.

For neams with wen opening. a similar method will be applied to the moment of inertia
anout its weak axis. However. since there is no variation of the torsional constant due to
wen opening. and since the variation of the moment of inertia about its weak axis can be
neglected in practice. as stated in this paper. the expression of the lateral buckling of the
beam without wen opening is applicable to the beam with web opening.

Uniform beams with a solid section or elosed section can be considered to be beams
in which web stifleners or batten plates. respectively. derived in this paper are continuously
distributed throughout the whole of the span. Then. the well-known governing equations
for the beams with these sections will be easily introduced from the theory derived here by
considering that the Dirac functions J(x - x,,) and J(x - x,,,) exist continuously throughout
the whole of the span of the beams. Also. for the lateral buckling of inelastic beams or of
non-uniform beams. the method presented here will be applied.

The proposed result will be necessary to compare with experimental values. [I' a
difference between the proposed result and experimental results exists. it will be based on
the eflective region of stilrnesses produced by web stifleners and batten plates. In this paper
this clreetive region has been assumed to be the thickness I, for a web stiffener or the width
hp for a ballen plate. If the proposed result is modified by a coellicient selected to have the
good agreement with experimental values. it will be made perlect.

.·"'kno""..d""",,·n'.> .-The author would like to express his appreciation to Mr Paul T. Ilobelm'ln of Kanazawa
Institute of Technology for his careful reading of ,lnd dfcctive suggestions for this manuscript. Also. the author
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